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Abstract. The spin diffusion and spin–lattice relaxation in solids containing paramagnetic
impurities under the influence of a multiple-pulse spin-locking radio-frequency sequence are
studied. The diffusion equation is obtained, providing the possibility of finding the time dependence
of the magnetization. The spin–lattice relaxation time is calculated as a function of the correlation
time and multiple-pulse field parameters.

1. Introduction

In solids containing paramagnetic impurities (PIs) the dipole–dipole interactions (DDIs) play
the dominant role in the spin-relaxation processes [1, 2]. The DDI between nuclear spinsI

and PI spinsS leads to a direct spin–lattice relaxation of the nuclear spin system and, due to
the inverse-sixth-power dependence on their separation, the local nuclear magnetizations reach
their equilibrium values at a faster rate near the PIs [1–3]. As a result, the nuclear magnetization
will be a function of the position, and the spatial diffusion of the nuclear Zeeman energy is
induced by flip-flop transitions due to DDIs between nuclear spins [1–3].

However, as is well known, the inner spin–spin interactions, both homonuclear and
heteronuclear, can be changed by applying a rapidly oscillating radio-frequency (r.f.) irradiation
[4]. Such techniques are extensively used to obtain high-resolution NMR spectra of solids by
means of averaging the DDIs [5, 6]. For this purpose, various experimental techniques have
been developed, many of which utilize pulsed r.f. fields. One of the first such experiments,
based on pulse spin-locking [7], was carried out to study spin–lattice relaxation.

In the present paper, we study the spin diffusion and spin–lattice relaxation that are caused
by coupling with PIs and under the influence of multiple-pulse r.f. irradiation.

2. The effective Hamiltonian

Let us consider a sample containing nuclear spinsI coupled to PI spinsS by DDIs and placed
in a high constant magnetic field and multiple-pulse r.f. fields. The dynamics of the spin system
in the frame, rotating with the nuclear Larmor frequency, can be described by a solution of the
equation for the state operatorρ(t):

dρ(t)

dt
= [H(t), ρ(t)] (1)

with the Hamiltonian

H(t) = −f (t)I x +HII +HIS +HS (2)
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where

f (t) = ωe
∞∑
k=0

δ

(
t

tc
− k − 1

)
and whereωe = ϕ/tc, tc is the period of the multiple-pulse sequence,ϕ = γIH1tw, γI is the
gyromagnetic ratio of the nuclei, andH1 is the amplitude of the r.f. pulse.HII is the secular
part of the nuclear DDI Hamiltonian:

HII =
∑
µ6=η

aµη

[
I zµI

z
η −

1

4
(I+
µI
−
η + I−µ I

+
η )

]
(3)

whereaµη = γ 2
I r
−3
µη (1 − 3 cos2 θµη), andrµη and θµη are the spherical coordinates of the

vectorErµη connecting theµth andηth nuclei in a coordinate system with theZ-axis along the
direction of the external magnetic field. In the impurity–nuclear DDI Hamiltonian,HIS , we
retain also only the secular relativeZ-axis term which gives the dominant contribution to the
relaxation process:

HIS =
∑
µj

bµj I
z
µS

z
j (4)

wherebµj = γIγSr
−3
µj (1− 3 cos2 θµj ), γS is the gyromagnetic ratio of the PI, andrµj is the

distance between nuclear and PI spins. Here, the Greek indices indicate the positions of the
nuclei and the italic ones those of the impurities.HS describes the impurity spin system.

In order to take into account the effect of the multiple-pulse irradiation, we apply the
unitary transformation

ρ̃(t) = U(t)ρ(t)U+(t) (5)

with the unitary operator

U(t) = exp

{
−i
∫ t

0
dt ′ [f (t)− ωe]I x

}
. (6)

The equation of motion of the state operator (1) in the transform frame is given by

i
dρ̃(t)

dt
= [H̃(t), ρ̃(t)] (7)

where

H̃(t) = He +H0
II +

1∑
m=−1,m 6=0

(φ2m(t)H(2m)II + φm(t)H(m)IS ) +HS (8)

He = ωeI x. (9)

Also, the functions

φm(t) = exp

{
−im

∫ t

0
dt ′ [f (t ′)− ωe]

}
are periodic with the periodtc. H0

II is the secular part([H0
II ,He] = 0) andH(2m)II is the

non-secular part([H(2m)II ,He] = 2mωeH(2m)II ) of the nuclear DDI Hamiltonian relative to the
X-axis. H(m)IS is the non-secular part([H(m)IS ,He] = mωeH(m)IS ) of the impurity–nuclear DDI
Hamiltonian relative to theX-axis.

To take into account the influence of the time-dependent terms in equation (7), we expand
the periodic functionsφ2m(t) andφm(t), with the periodtc, in Fourier series:

φq(t) =
∞∑

n=−∞
c(q)n e−iωnt φq(t) = φ∗−q(t) (10)
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where

c(q)n =
(−1)n sinθq
nπ + θq

θq = |q|ωetc/2 q = 2m,m (11)

and write the Hamiltonian (7) in the following form:

H̃(t) = He +H0
II +

∞∑
n=−∞

1∑
m=−1,m6=0

(c(2m)n H(2m)II + c(m)n H
(m)
IS ) exp(−imωet) +HS. (12)

The value oftc in multiple-pulse experiments is chosen such thattc||HII || � 1 (here
||HII || is the norm of the nuclear DDI Hamiltonian), and to account for the oscillating nuclear
DDI terms in equation (12) the Krylov–Bogolyubov–Mitropol’skii averaging method [8] can
be used. The result of carrying out the averaging procedure on equation (12) may be written
as an effective Hamiltonian:

Heff (t) = He +HII +
∞∑

n=−∞

1∑
m=−1,m 6=0

c(m)n H
(m)
IS exp(−imωet) +HS (13)

where

HII=H 0
II +A

[
H−2
II ,H

2
II

]
(14)

A =
∞∑

n=−∞

c(2)n c
(−2)
n

2ωn
= tc

2
cotθ2. (15)

3. The spin-diffusion equation

To obtain the equation describing the spin diffusion and spin–lattice relaxation of the spin
system under the spin-locking excitation, we will use the method of non-equilibrium state
operators [9], which has been applied to obtain the diffusion equation in the case of the
Zeeman order spin diffusion in the laboratory frame [10]. Introducing a nuclear spin-density
operator:

EI (Er) =
∑
µ

δ(Er − Erµ) EIµ (16)

the density of the operatorHe can be written down in the form

He(Er) = ωeI x(Er). (17)

Assuming that for a timet > T2 (T2 is a spin–spin relaxation time) after the beginning of
the multiple-pulse irradiation a quasi-equilibrium state is established [11–13], then the state
operatorρ̃(t) can be written as

ρ = Z−1 exp

{
−
∫

dEr βe(Er, t)He(Er)− βSHS

+
∫ 0

−∞
dt eεt

[ ∫
dEr βe(Er, t)∂He(Er)

∂t
+ βS

∂HS
∂t

]}
(18)

whereZ = Tr exp{· · ·} and the transition to the limitε → +0 should be made after the
calculation of the integral.βe(Er, t) is the local inverse temperature of the nuclear dipole
reservoir. In equation (18) all operators are taken in the Heisenberg representation. Taking
into account that the heat capacity of the PI:

PS = − ∂

∂βS
〈HS〉
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is large in comparison with nuclear spin heat capacity (PS/PI ∼ γ 2
S /γ

2
I ∼ 106) and that the

spin–lattice relaxation time of the PI,T1S , is very short (T1S/T1I ∼ 10−3) [14], a case which is
experimentally realizable, it is reasonable to consider only the relaxation process with constant
inverse spin temperature of the PI,βS , equal to that of the lattice:βS = βL. Therefore, the
PI’s reservoir is in thermal equilibrium with the lattice andβS is independent of the position.

Using the commutation rules for the components of the spin-density operator (17):[
I x(Er), I y(Er ′)] = iδ(Er − Er ′)I z(Er) (19)

we can obtain the following equations in the form of localized laws of conservation of the spin
energy densities:

∂He(Er)
∂t

+ div Eje(Er) = KeS(Er) (20)

∂HS
∂t
= −

∫
dEr KeS(Er). (21)

The last equation is the result of the energy conservation law. In equation (20),Eje(Er) is the
operator of the flux of the nuclear Zeeman energy in the effective fieldωe:

Eje(Er) = iωe
2

∫
dEr ′ (Er − Er ′)

{
1

4
a(Er − Er ′) + 18A2

∫
dEr ′′ a(Er − Er ′′)a(Er ′′ − Er ′)

× I x(Er ′′)[I+(Er)I−(Er ′)− I−(Er)I+(Er ′)]
}

(22)

andKeS(Er) in equation (20) is the change of the nuclear Zeeman energy due to the interaction
with the PI:

KeS(Er) = iωe
2

∫
dEr ′ b(Er − Er ′) [φ1(t)I

+(Er)− φ−1(t)I
−(Er)] Sz(Er ′). (23)

An application of the state operator (18) to the averaging of the transport equation (20) in
the high-temperature approximation results in the diffusion equation:

∂βe(Er, t)
∂t

= D1βe(Er, t)− T −1
1 (Er) [βe(Er, t)− βL] (24)

with the boundary condition

∇βe(r)
∣∣
r=l = 0 (25)

wherel ∼ (γS/γI )
1/3r0 is the radius of the diffusion barrier [1, 2], inside of which the spin

diffusion process is quenched, andr0 is distance between neighbouring nuclei. The first term
on the right-hand side of equation (24) describes the variation (in time) of the dipolar order
due to the spin diffusion with the diffusion coefficient

D = D(1) +D(2) (26)

whereD(1) is the spin-diffusion coefficient, computed to first order from the nuclear DDI
Hamiltonian:

D(1) = 1

4

∑
µ6=η

(Erµ − Erη)2a2(Erµ − Erη)Jµη(ωe). (27)

Here,

Jµη(ωe) =
∫ ∞
−∞

dt gµη(t)e
iωet
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is the spectral function of the NMR resonance line with the correlation function

gµη(t) = 〈I+
µ(0)I

−
η (t)〉. (28)

D(2) is the second-order spin-diffusion coefficient:

D(2) = (18A)2
∑
µ6=η 6=ν

(Erµ − Erη)2a2(Erµ − Erv)a2(Erη − Erv)
∫ ∞
−∞

dt gµην(t)e
iωet (29)

with gµην(t) = 〈(I xν )2I+
µ(0)I

−
η (t)〉. Note that atωetc = π/2 the second-order spin-diffusion

coefficientD(2) = 0.
The second term in equation (24) gives the rate of change ofβe(Er) due to the relaxation

with the relaxation timeT1(Er) which is given, for a cubic crystal, by

T (Er) =
(

1

2

∑
µj

bµjJj (ωe, τc)

)−1

(30)

whereτc is the correlation time andJ (ωe, τc) is the spectral function:

Jj (ωe, τc) = 1

2π

∞∑
n=−∞

c1
nc
−1
n

∫ ∞
0

dt Re
[
e−i(ωe+ωn)t

〈
Szj (0)S

z
j (t)

〉]
. (31)

4. Results and discussion

Immediately after a disturbance of the nuclear spin system, there is no gradient ofβe, and
diffusion cannot be of importance at the start of the relaxation process [15]. To describe the
relaxation, we can use equation (24) without the first term; this is the so-called direct-relaxation
regime [16]. In this case the normalized relaxation function:

R(t) = β(t)− β(∞)
β(0)− β(∞)

which is averaged over the sample takes the form [17]

R(t) = exp

[
−
(
t

T1

)α]
. (32)

For a homogeneous distribution of paramagnetic centres and nuclear spins,α = Q/6 where
Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into
q-dimensional subsystems, each containing one paramagnetic centre, yieldingα = (Q+q)/6.
If we assume that the local magnetization of the subsystem is constrained to taking a direction
with respect to the effective field ofEωe, then the subsystem dimensionalityq = 1. So, for a
three-dimensional sample,Q = 3, the magnetization grows according to equation (32) with
α = 2/3, which is consistent with a spin-locking experiment [18] (figure 1). Furthermore, if
we assume that in the high-temperature approximation the correlation function of the PI spins
in equation (31) is exponential with correlation timeτc:〈

Szj (0)S
z
j (t)

〉
=
〈
Sz2j (0)

〉
exp

(
−|t |
τc

)
(33)

then the dependence ofT1 on the correlation timeτc and multiple-pulse spin-locking parameters
tc andϕ can be found.

Substituting equation (33) in equation (31), we have

Jj (ωe, τc) = 1

2π

〈
Sz2j (0)

〉 ∞∑
n=−∞

c1
nc
−1
n

∫ ∞
0

dt Re
[
e−i(ωn+ωe)t−|t |/τc] . (34)
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Figure 1. The log of the19F spin-locking signal in CaF2 doped with Eu2+ (0.05 mol%) as a function
of t2/3 for the direct-relaxation regime. The solid line is an apparent fit to expression (32).

After integrating by parts twice and the summing overn, we obtain

Jj (ωe, τc) = τc

2π

〈
Sz2j (0)

〉 [
1− τc

tc

(1− cosϕ) sinh(tc/τc)

cosh(tc/τc)− cosϕ

]
. (35)

Using equations (30) and (35), the spin–lattice relaxation time for the direct-relaxation
regime can be calculated as a function of the correlation timeτc and multiple-pulse field
parametersϕ andtc:

T1 ∼ 1

τc

[
1− τc

tc

(1− cosϕ) sinh(tc/τc)

cosh(tc/τc)− cosϕ

]−1

. (36)

The direct-relaxation regime of the magnetization should be valid for a short time after
a disturbance of the nuclear spin system [15]. Thusβe is expected to start with a non-
exponential time-dependent function, and proceed asymptotically to being an exponential
function of time, in the so-called diffusion-relaxation regime [15,16]. In this case we have to
take into account also the first term in equation (24). One of the ways of solving this equation
and extracting the time dependence is to introduce the eigenfunctionsχn(Er) of the operator
D1− T −1(Er) [19]. Making the approximation of assuming spherical symmetry, the general
solution of equation (24) can be written as an expansion in terms of the orthogonal functions
χn(Er):

βd(r, t) =
∫

dr ′
∑
n

exp(−k2
nDt)χn(r)χ

∗
n (r
′) (37)

where the functionsχn(r) satisfy the equation

1χn(r)− T
−1(Er)
D

χn(r) = −k2
nχn(r) (38)

with the boundary condition

∇χn(r)
∣∣
r=l = 0. (39)
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Equation (38) is well known in the theory of scattering for low-energy limit [20], and has
an asymptotic solution forr � l, namelyχn(r) ∼ sin(knr + δn)/r, whereδn ∼ knξ is the
phase shift andξ is the scattering length [20]. In view of the spherical symmetry, only s-wave
scattering withn = 0 is taken into account. Replacing the local spin–lattice relaxation time
T (Er), equation (30), which is angularly dependent, by the average over anglesθµj , we obtain
thatT −1(Er) ∼ B/r6, where

B ∼ γIγS
〈
Jj (ωe, τc)

〉
θµj
. (40)

For (B/D)1/4� r � 1/k0, we obtain [20]

ξ =
(
B

D

)1/4
0(3/4)

20(5/4)
. (41)

Using the last result, for the long-time approximationt � l2/D, we obtain the normalized
relaxation function for the diffusion regime:

R(t) = exp(−t/T1D) (42)

where

T1D = 1

4πCpDξ
. (43)

Substituting equation (41) in (43), we obtain an expression that describes the exponential
time dependence ofβe(t) with the relaxation time:

T1D =
[
2πCpD

3/4B1/40(3/4)

0(5/4)

]−1

(44)

which is inversely proportional to the impurity concentrationCp [14]. Using equations (35),
(40), and (44), the spin–lattice relaxation time for the diffusion regime can be calculated as a
function of the correlation time and multiple-pulse field parameters:

T1D ∼
(

1

τc

)1/4 [
1− τc

tc

(1− cosϕ) sinh(tc/τc)

cosh(tc/τc)− cosϕ

]−1/4

. (45)

Fitting the experimental data [18] yields a good agreement withT1D = 1.75 ms obtained
for the diffusion part of the relaxation process (figure 2). At times longer than 2 ms, the
direct-relaxation regime changes to the diffusion one.

2 3 4 5 6 7
1E-3

0.01

CaF2 doped by 

0.05 mol% Eu
2+

T1=1.75 ms

G
(t

) 
(a

.u
.)

t (ms)

Figure 2. The log of the19F spin-locking signal in CaF2 doped
with Eu2+ (0.05 mol%) as a function oft for the diffusion-
limited regime of relaxation. The solid line is an apparent fit
to expression (42).
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5. Conclusions

We obtained the spin-diffusion equation, which allows us to find the time dependence of the
magnetization. The spin–lattice relaxation time is calculated as a function of the correlation
time and multiple-pulse field parameters. At the beginning of the relaxation process the direct-
relaxation regime is realized with non-exponential time dependence. This type of relaxation
behaviour of the magnetization has been observed experimentally [18]. Then the relaxation
regime will be changed to a diffusion one in accordance withT1 < T1D [18].
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